If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35h^2+33h=0
a = 35; b = 33; c = 0;
Δ = b2-4ac
Δ = 332-4·35·0
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1089}=33$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-33}{2*35}=\frac{-66}{70} =-33/35 $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+33}{2*35}=\frac{0}{70} =0 $
| 15-4m-3m=m-8+7 | | 2(4x+5)=10x+2 | | -14-7w+10=8w+14-3 | | 16/16x=18 | | x/300=80/240 | | 3/x+1=6/x-7 | | 14x=5;x= | | -10z-14-8z=7-17z-12 | | 10−3p=–10−4−6p | | -10y+14y-21=-6y+23-12y | | x+2/2x-3=-3 | | 6-x-3+4=4(x-2) | | 3x+55=136 | | 8/1x=3 | | 16-6x-10=-3x+12-2x | | 0.66+f=0.20 | | x+7/2=x-9 | | 180-4.5x+14=-9+8x | | (p-16)/4=12 | | 4.6=e-3.2e= | | 3x+6/6=-4 | | 6m+4=34m= | | (p-16)÷4=12 | | -14-7w+10=8w+-4-3 | | 5(k+3)=20 | | 2x^2+16x-260=0 | | 12+2b=30 | | 0.5(10x+23)=3.4(0.2x+5) | | n8123=37 | | 4(w+6)=28 | | 9(p-12)-7=12(p+3) | | 4x^2+8-8=0 |